54 research outputs found

    Refill and Drawdown Rules for Parallel Reservoirs: Quantity and Quality

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-006-0325-4This paper presents two operating rules for the refill and drawdown seasons of reservoirs in parallel for water supply, considering water quality. For the refill season a Linear Programming form of the New York City Rule is developed. Another Linear Programming form based on equalizing the probability of emptying each reservoir is developed for the drawdown season. Both formulations are extended to consider stratified water quality in the reservoirs and a water quality requirement for a downstream demand. The refill rule is applied to Shasta and Whiskeytown reservoirs in California (USA). The drawdown rule is applied to Alarcon and Contreras reservoirs in the Jucar Basin (Spain). The results of these applications show the effect of a water quality consideration in water supply operation.Paredes Arquiola, J.; Lund, JR. (2006). Refill and Drawdown Rules for Parallel Reservoirs: Quantity and Quality. Water Resources Management. 20(3):359-376. doi:10.1007/s11269-006-0325-4S359376203Arnold, U. and Orlob, G. T., 1989, ‘Decision support for estuarine water quality management’, J. Water Resour. Plng. Mgmt. ASCE, 115(6), 775–792.Bower, B. T., Hufschmidt, M. M., and Reedy, W. W., 1966, ‘Operating procedures: Their role in the design of water—resource systems by simulation analyses’, A. Maass et al. (eds.), Design of Water-Resource System, Harvard University Press, Cambridge, Mass., 443–458.Brooke, A., Kendrick, D. and Meeraus, A., 1992, GAMS: A Users Guide: Release 2.25, The Scientific Press Series, Boyd and Fraser Publishing Co. Danvers, MA 01923.Chapra, S. C., 1997, Surface Water-Quality Modeling. McGraw-Hill, New York.Clark, E. J., 1950, ‘New York control curves’ J. AWWA, 42(9), 823–827.Clark, E. J., 1956, ‘Impounding reservoirs’ J. AWWA, 48(4), 349–354. Engineering manual: Engineering and design, Hydropower. (1985). EM 1110–1701, U.S. Army Corps of Engineers, Washington, D.C.Costa, J. R. and Loucks, D. P., 1987, ‘Water quality management in the Ave River: From research to practice’, System Analysis in Water Quality Mgmt. Proc. IAWPRC Symp.de Azevedo, L. G. T., 1994, ‘Integration of water quantity and quality in multi-sector river basin planning’, PhD thesis, Dept. of Civ. Engrg., Colorado State University, Fort Collins, Colo.de Azevedo, L. G. T., Gates, T. K., Fontane, D. G., Labadie, J. W., and Porto, R. L., 2000, ‘Integration of water quantity and quality in strategic river basin planning’, J. Water Resour. Plng. Mgmt. ASCE, 126(2), 85–97Dai, T. and Labadie, J. W., 2001, ‘River basin network model for integrated water quantity/quality management’, J. Water Resour. Plng. Mgmt. ASCE 27(5). 295–305.Gu, R. R. and Li, Y., 2002, ‘River Temperature sensitivity to hydraulic and meteorological parameters’, Journal of Environmental Management 66, 43–56.Hayes, D., Labadie, J., Sanders, T., and Brown, J., 1998, ‘Enhancing water quality in hydropower system operations’, Water Resour. Res. 34(3), 471–483.Johnson, S. A., Stedinger, J. R., and Staschus, K., 1991, ‘Heuristic operating policies for reservoir system simulation’, Water Resour. Res., 27(6), 673–685.Labadie, J., 2004, ‘Optimal operation of multireservoir systems: State-of-the-art review’, Journal of Water Resources Planning and Management 130(2), 93–111.Loftis, B., Labadie, J. W., and Fontane, D. G., 1985, ‘Optimal operation of a system of lakes for quality and quantity’, H. C. Torno (ed.), Computer Applications in Water Resources, ASCE, New York, 693–702.Loucks, D. P., Stedinger, J. R., and Haith, D. A. 1981, Water Resource Systems Planning and Analysis, Englewood Cliffs, N. J. Prentice-Hall Inc. ISBN:013945923-5.Lund, J. R. and Guzman, J., 1996, ‘Developing seasonal and long-term reservoir system operation plans using HEC-PRM’, Tech. Rep. No. RD—40, Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, Calif.Lund, J. R. and Guzman, J, 1999, ‘Derived operating rules for reservoirs in series or in parallel’, J. Water Resour. Plng. Mgmt. ASCE 143–153.Mehrez, C., Percia, C., and Oron, G., 1992, ‘Optimal operation of a multisource and multiquality regional water system’, Water Resour. Res. 28(5), 1199–1206.Orlob, G. and Simonovic, S., 1982, ‘Reservoir operation for water quality control’, Experience in Operation of Hydrosystems, Water Resources Publications, Highlands Ranch, Colo., 263–285Sand, G. M., 1984, ‘An analytical investigation of operating policies for water-supply reservoirs in parallel’, PhD dissertation, Cornell University, Ithaca, N.Y.Strzepek, K. M. and Chapra, S. C., 1990, ‘Do the right thing’, Civ. Engr. ASCE 60(1), 55–56.Tu, M-Y., Hsu, N-S., and Yeh, W-G., 2003, ‘Optimization of reservoir management and operation with Hedging rules’, J. Water Resour. Plng. Mgmt. ASCE 129(2), 86–97.Willey, R. G., Smith, D. J., and Duke, J. H. Jr., 1996, ‘Modeling water-resource systems for water-quality management’, J. Water Resour. Plng. Mgmt. ASCE 171–179.Wu, R. S., 1988, ‘Derivation of balancing curves for multiple reservoir operation’, MS thesis, Dept. of Civ. and Envir. Engrg., Cornell University, Ithaca, N.Y

    Improved modelling of the freshwater provisioning ecosystem service in water scarce river basins

    Get PDF
    [EN] Freshwater provisioning by the landscape contributes to human well-being through water use for drinking, irrigation and other purposes. The assessment of this ecosystem service involves the quantification of water resources and the valuation of water use benefits. Models especially designed to assess ecosystem services can be used. However, they have limitations in representing the delivery of the service in water scarce river basins where water management and the temporal variability of water resource and its use are key aspects to consider. Integrating water resources management tools represents a good alternative to ecosystem services models in these river basins. We propose a modelling framework that links a rainfall-runoff model and a water allocation model which allow accounting for the specific requirements of water scarce river basins. Moreover, we develop a water tracer which rebounds the value of the service from beneficiaries to water sources, allowing the spatial mapping of the service.The authors acknowledge the support of Universitat Politecnica de Valencia through its Support Programme for Research and Development. We also wish to thank Confederacion Hidrogr afica del Duero (belonging to the Spanish Ministry of Agriculture, Food and Environment) for the data provided in developing this study and the Spanish Ministry of Economy and Competitiveness for its financial support through the projects SCARCE (Consolider-Ingenio 2010 CSD2009-00065) and NUTEGES (CGL2012-34978). We also value the support provided by the European Community in financing the Seventh Framework Program projects DROUGHTR&SPI (FP7-ENV-2011, 282769), ENHANCE (FP7-ENV-2012, 308438), the H2020 project IMPREX (H2020-WATER-2014-2015, 641811), the grant WAMCD (EC-DG Environment No. 07.0329/2013/ 671291/SUB/ENV.C1) and the Life þ project LIFE ALBUFERA (LIFE12 ENV/ES/000685).Momblanch Benavent, A.; Andreu Álvarez, J.; Paredes Arquiola, J. (2017). Improved modelling of the freshwater provisioning ecosystem service in water scarce river basins. Environmental Modelling & Software. 94:87-99. https://doi.org/10.1016/j.envsoft.2017.03.033S87999

    Quantification of climate change impact on dam failure risk under hydrological scenarios: a case study from a Spanish dam

    Full text link
    [EN] Dam safety is increasingly subjected to the influence of climate change. Its impacts must be assessed through the integration of the various effects acting on each aspect, considering their interdependencies, rather than just a simple accumulation of separate impacts. This serves as a dam safety management supporting tool to assess the vulnerability of the dam to climate change and to define adaptation strategies under an evolutive dam failure risk management framework. This article presents a comprehensive quantitative assessment of the impacts of climate change on the safety of a Spanish dam under hydrological scenarios, integrating the various projected effects acting on each component of the risk, from the input hydrology to the consequences of the outflow hydrograph. In particular, the results of 21 regional climate models encompassing three Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) have been used to calculate the risk evolution of the dam until the end of the 21st century. Results show a progressive deterioration of the dam failure risk, for most of the cases contemplated, especially for the RCP2.6 and RCP4.5 scenarios. Moreover, the individual analysis of each risk component shows that the alteration of the expected inflows has the greater influence on the final risk. The approach followed in this paper can serve as a useful guidebook for dam owners and dam safety practitioners in the analysis of other study cases.The authors acknowledge the Spanish Ministry for the Ecological Transition (MITECO) for its support in the preparation of this paper.Fluixá Sanmartín, J.; Morales Torres, A.; Escuder Bueno, I.; Paredes Arquiola, J. (2019). Quantification of climate change impact on dam failure risk under hydrological scenarios: a case study from a Spanish dam. Natural Hazards and Earth System Sciences. 19(10):2117-2139. https://doi.org/10.5194/nhess-19-2117-2019S211721391910AEMET: AEMET Spain02 v5 dataset, available at: http://www.aemet.es/es/serviciosclimaticos/cambio_climat/datos_diarios/ayuda/rejilla_20km, last access: 30 September 2019. a, bAkhtar, M., Ahmad, N., and Booij, M.: The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios, J. Hydrol., 355, 148–163, https://doi.org/10.1016/j.jhydrol.2008.03.015, 2008. aArdiles, L., Sanz, D., Moreno, P., Jenaro, E., Fleitz, J., and Escuder-Bueno, I.: Risk Assessment and Management for 26 Dams Operated By the Duero River Authority (Spain), in: 6th International Conference on Dam Engineering, Lisbon, Portugal, 2011. a, b, cASCE: Hydrology handbook, no. 28 in ASCE manuals and reports on engineering practice, 2nd Edn., ASCE, New York, oCLC: 636373660, 1996. aBahls, V. and Holman, K.: Climate Change in Hydrologic Hazard Analyses: Friant Dam Pilot Study – Part I: Hydrometeorological Model Inputs, Tech. rep., US Department of the Interior, Bureau of Reclamation, Denver, Colorado, USA, 2014. aBenestad, R.: Downscaling Climate Information, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, Oxford, https://doi.org/10.1093/acrefore/9780190228620.013.27, 2016. aBoé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007. a, bBowles, D.: Advances in the practice and use of portfolio risk assessment, in: ANCOLD Conference on Dams, Cairns, Queensland, Australia, 2000. aCannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?, J. Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. aCEDEX: Hydrological Yearbook – Centro de Estudios y Experimentación de Obras Públicas, available at: http://ceh-flumen64.cedex.es/anuarioaforos/default.asp, last access: 30 September 2019. a, bChernet, H. H., Alfredsen, K., and Midttømme, G. H.: Safety of Hydropower Dams in a Changing Climate, J. Hydrol. Eng., 19, 569–582, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000836, 2014. aChow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, McGraw-Hill series in water resources and environmental engineering, 1988 Edn., McGraw-Hill, New York, oCLC: 551823930, 2008. aConfederación Hidrográfica del Duero: Plan Hidrológico de la parte española de la demarcación hidrográfica del Duero, 2015–2021, available at: http://www.chduero.es/ (last access: 30 September 2019), 2015. a, b, cEscuder-Bueno, I. and González-Pérez, J.: Metodología para la evaluación del riesgo hidrológico de presas y priorización de medidas correctoras, Colegio de Ingeniero de Caminos, Canales y Puertos, Madrid, Spain, 2014. aFluixá-Sanmartín, J., Altarejos-García, L., Morales-Torres, A., and Escuder-Bueno, I.: Review article: Climate change impacts on dam safety, Nat. Hazards Earth Syst. Sci., 18, 2471–2488, https://doi.org/10.5194/nhess-18-2471-2018, 2018. a, b, c, d, e, fFluixá-Sanmartín, J., Altarejos-García, L., Morales-Torres, A., and Escuder-Bueno, I.: Empirical Tool for the Assessment of Annual Overtopping Probabilities of Dams, J. Water Resour. Pl. Manage., 145, 04018083, https://doi.org/10.1061/(ASCE)WR.1943-5452.0001017, 2019. aFoehn, A., García Hernández, J., Roquier, B., Fluixá-Sanmartín, J., and Paredes Arquiola, J.: RS MINERVE – User's manual v2.12, RS MINERVE Group, Switzerland, 2019. aFrancés, F., García-Bartual, R., and Bussi, G.: High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events, in: Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, edited by: Escuder-Bueno, I., Matheu, E., Altarejos-García, L., and Castillo-Rodríguez, J. T., CRC Press, Leiden, 99–105, 2012. aFujihara, Y., Tanaka, K., Watanabe, T., Nagano, T., and Kojiri, T.: Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations, J. Hydrol., 353, 33–48, https://doi.org/10.1016/j.jhydrol.2008.01.024, 2008. aGao, X., Pal, J. S., and Giorgi, F.: Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation, Geophys. Res. Lett., 33, L03706, https://doi.org/10.1029/2005GL024954, 2006. aGarcía Hernández, J., Paredes Arquiola, J., Foehn, A., Roquier, B., and Fluixá-Sanmartín, J.: RS MINERVE – Technical manual v2.17, RS MINERVE Group, Sion, Switzerland, 2019. a, bGiorgi, F., Jones, C., and Asrar, G.: Addressing climate information needs at the regional level: the CORDEX framework, WMO Bulletin, 58, 175–183, 2009. aGu, H., Wang, G., Yu, Z., and Mei, R.: Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model, Climatic Change, 114, 301–317, https://doi.org/10.1007/s10584-012-0411-y, 2012. aGudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a, bGupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. aGutjahr, O. and Heinemann, G.: Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM: Effects on extreme values and climate change signal, Theor. Appl. Climatol., 114, 511–529, https://doi.org/10.1007/s00704-013-0834-z, 2013. aHerrera, S., Fernández, J., and Gutiérrez, J. M.: Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology, Int. J. Climatol., 36, 900–908, https://doi.org/10.1002/joc.4391, 2016. aIPCC: Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change, 1. Edn., Cambridge Univ. Press, Cambridge, UK, and New York, NY, USA, 2012. aIPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013. aIPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, in: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 2014. aiPresas: iPresas Calc., User guide, Valencia, ipresas risk analysis Edn., available at: http://www.ipresas.com, last access: 30 September 2019. aIPSL: Pierre Simon Laplace Institute (IPSL) ESGF node, available at: https://esgf-node.ipsl.upmc.fr/projects/esgf-ipsl/, last access: 30 September 2019. aJacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. aJakob Themeßl, M., Gobiet, A., and Leuprecht, A.: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, https://doi.org/10.1002/joc.2168, 2011. aKaplan, S.: The Words of Risk Analysis, Risk Analysis, 17, 407–417, https://doi.org/10.1111/j.1539-6924.1997.tb00881.x, 1997. aKite, G. W.: Confidence limits for design events, Water Resour. Res., 11, 48–53, https://doi.org/10.1029/WR011i001p00048, 1975. a, bKite, G. W.: Frequency and risk analyses in hydrology, Water Resources Publications, Littleton, Colo., USA, 1988. aKling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. aKotlarski, S., Szabó, P., Herrera, S., Räty, O., Keuler, K., Soares, P. M., Cardoso, R. M., Bosshard, T., Pagé, C., Boberg, F., Gutiérrez, J. M., Isotta, F. A., Jaczewski, A., Kreienkamp, F., Liniger, M. A., Lussana, C., and Pianko-Kluczyńska, K.: Observational uncertainty and regional climate model evaluation: A pan-European perspective, Int. J. Climatol., 39, 3730–3749, https://doi.org/10.1002/joc.5249, 2017. aMaraun, D.: Bias Correcting Climate Change Simulations – a Critical Review, Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. aMinisterio de Fomento: Norma 5.2 – IC drenaje superficial de la Instrucción de Carreteras, in: Boletín Oficial del Estado, Madrid, Spain, 18882–19023, 2016. a, bMorales-Torres, A., Serrano-Lombillo, A., Escuder-Bueno, I., and Altarejos-García, L.: The suitability of risk reduction indicators to inform dam safety management, Struct. Infrastruct. Eng., 12, 1465–1476, https://doi.org/10.1080/15732479.2015.1136830, 2016. a, bMoss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010. aNash, J. and Sutcliffe, J.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. aNovembre, N., Holman, K., and Bahls, V.: Climate Change in Hydrologic Hazard Analyses: Friant Dam Pilot Study – Part II: Using the SEFM with Climate-Adjusted Hydrometeorological Inputs, Technical Memorandum 8250-2015-010, US Department of the Interior, Bureau of Reclamation, Denver, Colorado, USA, 2015. aOFEV (Ed.): Adaptation aux changements climatiques en Suisse, Plan d'action 2014–2019, Deuxième volet de la stratégie du Conseil fédéral du 9 avril 2014, Bern, Switzerland, 2014. aOrlowsky, B., Gerstengarbe, F.-W., and Werner, P. C.: A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM, Theor. Appl. Climatol., 92, 209–223, https://doi.org/10.1007/s00704-007-0352-y, 2008. aOur World in Data: Future Population Growth, available at: https://ourworldindata.org/future-population-growth (last access: 30 September 2019), 2018. aPanofsky, H. and Brier, G.: Some Applications of Statistics to Meteorology, Earth and mineral sciences continuing education, The Pennsylvania State University Press, Philadelphia, 1968. aParzen, E.: On Estimation of a Probability Density Function and Mode, Ann. Math. Stat., 33, 1065–1076, https://doi.org/10.1214/aoms/1177704472, 1962. aR Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org (last access: 30 September 2019), 2008. aReed, D., Faulkner, D., Robson, A., Houghton-Carr, H., Bayliss, A., and Institute of Hydrology: Flood estimation handbook: procedures for flood frequency estimation, Institute of Hydrology, Wallingford, Angleterre, oCLC: 301120221, 1999. aRiahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of long-term socio-economic and environmental development under climate stabilization, Technol. Forecast. Social Change, 74, 887–935, https://doi.org/10.1016/j.techfore.2006.05.026, 2007. aRiahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A scenario of comparatively high greenhouse gas emissions, Climatic Change, 109, 33–57, https://doi.org/10.1007/s10584-011-0149-y, 2011. aRogger, M., Kohl, B., Pirkl, H., Viglione, A., Komma, J., Kirnbauer, R., Merz, R., and Blöschl, G.: Runoff models and flood frequency statistics for design flood estimation in Austria – Do they tell a consistent story?, J. Hydrol., 456–457, 30–43, https://doi.org/10.1016/j.jhydrol.2012.05.068, 2012. aRosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density Function, Ann. Math. Stat., 27, 832–837, https://doi.org/10.1214/aoms/1177728190, 1956. aSchaefli, B., Hingray, B., Niggli, M., and Musy, A.: A conceptual glacio-hydrological model for high mountainous catchments, Hydrol. Earth Syst. Sci., 9, 95–109, https://doi.org/10.5194/hess-9-95-2005, 2005. aSerrano-Lombillo, A., Escuder-Bueno, I., de Membrillera-Ortuño, M. G., and Altarejos-García, L.: Methodology for the Calculation of Annualized Incremental Risks in Systems of Dams: Risk Calculation for Systems of Dams, Risk Analysis, 31, 1000–1015, https://doi.org/10.1111/j.1539-6924.2010.01547.x, 2011. a, b, cSerrano-Lombillo, A., Fluixá-Sanmartín, J., and Espert-Canet, V.: Flood routing studies in risk analysis, in: Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, edited by: Escuder-Bueno, I., Matheu, E., Altarejos-García, L., and Castillo-Rodríguez, J. T., CRC Press, Leiden, 99–105, 2012a. aSerrano-Lombillo, A., Morales-Torres, A., and García-Kabbabe, L.: Consequence estimation in risk analysis, in: Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, edited by: Escuder-Bueno, I., Matheu, E., Altarejos-García, L., and Castillo-Rodríguez, J. T., CRC Press, Leiden, 99–105, 2012b. aSerrano-Lombillo, A., Morales-Torres, A., Escuder-Bueno, I., and Altarejos-García, L.: Review, Analysis and Application of Existing Risk Reduction Principles and Risk Indicators for Dam Safety Management, Venice, Italy, 2013. aSPANCOLD: Risk Analysis as Applied to Dam Safety, Technical Guide on Operation of Dams and Reservoirs, Professional Association of Civil Engineers, Spanish National Committe on Large Dams, Madrid, available at: http://www.spancold.es/Archivos/Monograph_Risk_Analysis.pdf (last access: 30 September 2019), 2012. a, b, c, dSu, H.-T. and Tung, Y.-K.: Incorporating uncertainty of distribution parameters due to sampling errors in flood-damage-reduction project evaluation, Water Resour. Res., 49, 1680–1692, https://doi.org/10.1002/wrcr.20116, 2013. a, bTaylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. aTémez, J.: Extended and Improved Rational Method, Version of the Highways Administration of Spain, in: Proc. XXIV Congress IAHR, Madrid, Spain, 33–40, 1991. aThomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and Edmonds, J. A.: RCP4.5: a pathway for stabilization of radiative forcing by 2100, Climatic Change, 109, 77–94, https://doi.org/10.1007/s10584-011-0151-4, 2011. aUnited Nations: World Population Prospects: The 2017 Revision, Tech. rep., Department of Economic and Social Affairs, Population Division, available at: https://esa.un.org/unpd/wpp/Download/Standard/Population/ (last access: 30 September 2019), 2017. aUniversity of Cantabria: Santander Meteorology Group (University of Cantabria ­- CSIC), available at: http://www.meteo.unican.es/datasets/spain02, last access: 30 September 2019. aUSACE: Safety of dams – Policy and procedures, Tech. Rep. ER 1110-2-1156, US Army Corps of Engineers, Washington, D.C., 2011. aUSACE: Climate Change Adaptation Plan, Tech. rep., US Army Corps of Engineers Committee on Climate Preparedness and Resilience, Washington, D.C., USA, 2014. aUSBR: Dam Safety Public Protection Guidelines. A Risk Framework to Support Dam Safety Decision-Making, Tech. rep., US Department of the Interior, Bureau of Reclamation, Denver, Colorado, USA, 2011. aUSBR: Climate Change Adaptation Strategy, Tech. rep., US Department of the Interior, Bureau of Reclamation, Denver, Colorado, USA, 2014. a, bUSBR: Climate Change Adaptation Strategy: 2016 Progress Report, Tech. rep., US Department of the Interior, Bureau of Reclamation, Denver, Colorado, USA, 2016. a, bvan Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., van Ruijven, B., Wonink, S., and van Houdt, R.: Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs, Climatic Change, 81, 119–159, https://doi.org/10.1007/s10584-006-9172-9, 2007. avan Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran, A., Oostenrijk, R., and van Ruijven, B.: RCP2.6: exploring the possibility to keep global mean temperature increase below 2 ∘C, Climatic Change, 109, 95–116, https://doi.org/10.1007/s10584-011-0152-3, 2011. aWalsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G., Thorne, P., Vose, R., Wehner, M., Willis, J., Anderson, D., Doney, S., Feely, R., Hennon, P., Kharin, V., Knutson, T., Landerer, F., Lenton, T., Kennedy, J., and Somerville, R.: Ch. 2: Our Changing Climate, in: Climate Change Impacts in the United States: The Third National Climate Assessment, edited by: Melillo, J. M., Richmond, T (T. C.), and Yohe, G. W., u.s. global change research program Edn., 19–67, https://doi.org/10.7930/J0KW5CXT, 2014.  aYira, Y., Diekkrüger, B., Steup, G., and Bossa, A. Y.: Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations, Hydrol. Earth Syst. Sci., 21, 2143–2161, https://doi.org/10.5194/hess-21-2143-2017, 2017. 

    Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin

    Full text link
    [EN] The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC) and Bayesian network- (BN) based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS) to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertakenAvilés-Añazco, A.; Celleri, R.; Solera Solera, A.; Paredes Arquiola, J. (2016). Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin. Water. 8(2). doi:10.3390/w8020037S8

    Contribution of decision support systems to water management improvement in basins with high evaporation in Mediterranean climates

    Full text link
    [EN] The entry into force of Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 established a new model for the management and protection of surface water and groundwater in Europe. In this sense, a thorough knowledge of the basins is an essential step in achieving this European objective. The utility of integrative decision support systems (DSS) for decision-making in complex systems and multiple objectives allows decision-makers to identify characteristics and improve water management in a basin. In this research, hydrological and water management resource models have been combined, with the assistance of the DSS AQUATOOL, with the aim of deepening the consideration of losses by evaporation of reservoirs for a better design of the basin management rules. The case study treated is an Andalusian basin of the Atlantic zone (Spain). At the same time, different management strategies are analysed based on the optimization of the available resources by means of the conjunctive use of surface water and groundwater.The study was performed with the support of the Ecological Transition Ministry, through the Biodiversity Foundation.Ruíz-Ortíz, V.; García-López, S.; Solera Solera, A.; Paredes Arquiola, J. (2019). Contribution of decision support systems to water management improvement in basins with high evaporation in Mediterranean climates. Hydrology Research. 50(4):1020-1036. https://doi.org/10.2166/nh.2019.014S10201036504Alcamo J. , HenrichT. & RoschT.2000World Water in 2025 – Global Modelling and Scenario Analysis for the World Commission on Water for the 21st Century. Report A0002, Centre for Environmental System Research, University of Kassel, Germany.ALCAMO, J., FLÖRKE, M., & MÄRKER, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. doi:10.1623/hysj.52.2.247Allen R. G. , PereiraL. S., RaesD. & SmithM.2006Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper 56). Food and Agricultural Organization of the United Nations, Rome, Italy. http://www.fao.org/docrep/009/x0490s/x0490s00.htm (accessed 10 September 2018).Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAndreu J. , SoleraA., CapillaJ. & FerrerJ.2007Modelo SIMGES de simulación de la gestión de recursos hídricos, incluyendo utilización conjunta. Versión 3.03.01. Manual de usuario (Model SIMGES simulation of water resources management, including conjunctive use. 3.03.01 version. User Manual). Polytechnic University of Valencia, Valencia, Spain.Condon, L. E., & Maxwell, R. M. (2013). Implementation of a linear optimization water allocation algorithm into a fully integrated physical hydrology model. Advances in Water Resources, 60, 135-147. doi:10.1016/j.advwatres.2013.07.012EC (European Commission) 2012 A Blueprint to Safeguard Europe's Water Resources. European Commission, 14.11.2012 COM (2012) 673 final, Brussels, Belgium.González-Zeas D. 2012 Impacto del cambio climático sobre los usos del agua en Europa (Impact of Climate Change on Water Uses in Europe). PhD thesis, University of Madrid, Madrid, Spain.Junta de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. 2016Plan Hidrológico del Guadalete Barbate (2015–2021) (Hydrological Plan of the Guadalete Barbate 2015–2021). http://www.juntadeandalucia.es (accessed 25 May 2018).Li, P., Qian, H., & Wu, J. (2018). Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. International Journal of Water Resources Development, 34(3), 337-353. doi:10.1080/07900627.2018.1443059Paredes, J., Andreu, J., & Solera, A. (2010). A decision support system for water quality issues in the Manzanares River (Madrid, Spain). Science of The Total Environment, 408(12), 2576-2589. doi:10.1016/j.scitotenv.2010.02.037Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034Tabari, M. M. R., & Soltani, J. (2012). Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models. Water Resources Management, 27(1), 37-53. doi:10.1007/s11269-012-0153-7Singh, A. (2013). Irrigation Planning and Management Through Optimization Modelling. Water Resources Management, 28(1), 1-14. doi:10.1007/s11269-013-0469-ySingh, A. (2014). Conjunctive use of water resources for sustainable irrigated agriculture. Journal of Hydrology, 519, 1688-1697. doi:10.1016/j.jhydrol.2014.09.049Singh, A. (2014). Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23-29. doi:10.1016/j.agwat.2014.04.003Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal, 10(1), 52-67. doi:10.1007/s10040-001-0170-8Strosser P. , RoussardJ. & GrandmouginB.2007EU Water Saving Potential. ENV.D.2/ETU/2007/0001r. Final Report. 247. http://ec.europa.eu (accessed 2 July 2018).Hassan, S. M. T., Lubczynski, M. W., Niswonger, R. G., & Su, Z. (2014). Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach. Journal of Hydrology, 517, 390-410. doi:10.1016/j.jhydrol.2014.05.02

    Water Quantity and Quality Models Applied to the Jucar River Basin, Spain

    Full text link
    “The final publication is available at Springer via http://dx.doi.org/ 10.1007/s11269-010-9578-z ”.Traditionally, water quality modelling has focused on modelling individual water bodies. However, water quality management problems must be analyzed at the basin scale. European Water Framework Directive (WFD) requires introducing physical, chemical and biological aspects into the management of water resources systems. Water quality modelling at a basin scale presents the advantage of incorporating in a dynamic way the relationships between the different elements and water bodies. Currently, there are few tools to deal with water modelling of water quality and management at the basin scale. This paper presents the development of a water quantity model and a water quality model for a very complex water resources system: the JA(0)car River Basin (Spain). The basin is characterized by a high degree of use of the water and by many water problems related to point and diffuse pollution, on top of a complex water quantity management of the basin. To deal with this problem, SIMGES (water allocation) and GESCAL (water quality) basin scale models have been used. Both are part of the Decision Support System AQUATOOL, one of the main instruments used in Spain in order to analyze water quantity and quality aspects of water resources systems for the compliance with WFD, as shown for the case of study.This study was supported by funds from Jucar River Basin Agency (Spanish Ministry of Environment), from the Spanish Ministry of Education and Culture (project "Desarrollo de elementos de un sistema soporte de decision para la gestion de recursos hidricos", HID1999-0656), and from the European Union (project "SEDEMED-Secheresse et Desertification dans les bassins mediterranees", ref. 2002-024.4-1084).Paredes Arquiola, J.; Andreu Álvarez, J.; Martín Monerris, M.; Solera Solera, A. (2010). Water Quantity and Quality Models Applied to the Jucar River Basin, Spain. Water Resources Management. 24(11):2759-2779. doi:10.1007/s11269-010-9578-zS275927792411Andreu J, Capilla J (1993) Optimization and simulation models applied to the Segura water resources system. In: Marco J, Harboe R, Salas JD (eds) Stochastic hydrology in water resources systems: simulation and optimization. Kluwer, DordrechtAndreu J, Capilla J, Ferrer J (1992) Modelo Simges de simulación de la gestión de esquemas de recursos hídricos, incluyendo utilización conjunta. Serv. Publ. UPV, ValenciaAndreu J, Capilla J, Sanchis E (1996) AQUATOOL: a generalized decision support-system for water-resources planning and operational management. J Hydrol 177:269–291Andreu J, Solera A, Paredes J, Pérez MA, Pulido M (2008) Decision support tools for policy making in European Water Research Day (Zaragoza). European CommunitiesArnold U, Orlob GT (1989) Decision support for estuarine water quality management. J Water Resour Plan Manage, ASCE 115(6):775–792Bhakdisongkhram T, Koottated S, Towprayoon S (2007) A water model for water and environmental management at Mae Moh area in Thailand. Water Resour Manag 21:1535–1552CHJ (1998) Plan Hidrológico de la Cuenca del Júcar. Confederación Hidrográfica del Júcar. Ministerio de Medio Ambiente, Spainde Azevedo LGT, Gates TK, Fontane DG, Labadie JW, Porto RL (2000) Integration of water quantity and quality in strategic river basin planning. J Water Resour Plan Manage ASCE 126(2):85–97EC (2000) Directive 2000/60/EC of the European Parliament and of the Council, of 23 October 2000, establishing a framework for Community action in the field of water policy. Official Journal of the European Commission, L 327/1, 22.12.2000Edinger JE, Geyer JC (1965) Heat exchange in the environment. Department of Sanitary engineering and Water resources, Research Project No. 49. John Hopkins University, BaltimoreFord CR, Fulkerson DR (1962) Flow in networks. Princeton University Press, Princeton, p 194Huang GH, Xia J (2001) Barriers to sustainable water-quality management. J Environ Manag 61(1):1–23Koch H, Grünewald U (2009) A comparison of modelling systems for the development and revision of water resources management plans. Water Resour Manag 23:1403–1422Kotti ME, Vlessidis AG, Thanasoulias NC, Evmiridis NP (2005) Assessment of river water quality in Northwestern Greece. Water Resour Manag 19(1):77–94Letcher R, Croke B, Jakeman A (2007) Integrated assessment modelling for water resources allocation and management: a generalised conceptual framework. Environ Model Softw 22(5):733–742. doi: 10.1016/j.envsoft.2005.12.014Loucks DP, van Beek E (2005) Water resources systems planning and management—an introduction to methods, models and applications. UNESCO, ParisParedes J, Lund J (2006) Refill and drawdown rules for parallel reservoirs: quantity and quality. Water Resour Manag 20:359–376Paredes J, Andreu J, Solera A (2007) Manual del programa Gescal de la simulación de la calidad del agua. Universidad Politécnica de Valencia, ValenciaQin XS, Huang GH (2009) An inexact change-constrained quadratic programming model for stream water quality management. Water Resour Manag 23:661–695Strzepek K, García L, Over T (1989) MITSIM 2.1 river basin simulation model, user manual. Center for Advanced Decision Support for Water and Environmental Systems, University of Colorado, Bouldervan Gils JAG, Argiropoulos D (2004) Axios river basin water quality management. Water Resour Manag 5(3–4):271–280Zhang W, Wang Y, Peng H, Li Y, Tang J, Wu B (2009) A coupled water quantity–quality model for water allocation analysis. Water Resour Manag. doi: 10.1007/s11269-009-9456-

    Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain)

    Full text link
    Añadir el siguiente texto en el campo descripción: "This is an Accepted Manuscript of an article published in Hydrological Sciences Journal on 31-Mar-2020, available online: http://www.tandfonline.com/10.1080/02626667.2020.1734812."[EN] Water indicators and indices are useful tools to assess river basin performance, that is, to measure whether the basin operates satisfactorily under a wide range of possible future demands and hydrological conditions. Spanish regulations assess the performance of water demands by using reliability indicators (RIs), established by law in 2008. This article raises the possibility of updating RIs by comparing them with sustainability indicators (SIs). SIs are widely used for the assessment of river basin performance and several policy scenarios. We applied a water allocation model to the Guadiana River basin in Spain to compare indicators under three scenarios. The study was framed within the science of socio-hydrology, combining the physical environment of a water system with its influence on social aspects. SIs gave better results than RIs when comparing future scenarios. We also propose the introduction of a vulnerability indicator into Spanish regulations.The authors thank the Spanish Research Agency (MINECO) for the financial support to the ERAS project [CTM2016-77804-P], including EU-FEDER funds. Additionally, we value the support provided by the European Community in financing the project IMPREX [H2020-WATER-2014-2015, 641811].Palop-Donat, C.; Paredes Arquiola, J.; Solera Solera, A.; Andreu Álvarez, J. (2020). Comparing performance indicators to characterize the water supply to the demands of the Guadiana River basin (Spain). Hydrological Sciences Journal. 1-15. https://doi.org/10.1080/02626667.2020.1734812S115Aguilera, H., Castaño, S., Moreno, L., Jiménez-Hernández, M. E., & de la Losa, A. (2013). Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water–groundwater interactions. Hydrogeology Journal, 21(3), 623-641. doi:10.1007/s10040-012-0950-3Alarcón, J., Garrido, A., & Juana, L. (2016). Modernization of irrigation systems in Spain: review and analysis for decision making. International Journal of Water Resources Development, 32(3), 442-458. doi:10.1080/07900627.2015.1123142Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAshofteh, P.-S., Rajaee, T., & Golfam, P. (2017). Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs). Water Resources Management, 31(12), 3723-3744. doi:10.1007/s11269-017-1701-yBOE (Boletín Oficial del Estado), 2008. ORDEN ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE. 229 de 22 de septiembre 2008, 38472–38582. https://www.boe.es/buscar/doc.php?id=BOE-A-2008-15340.BOE (Boletín Oficial del Estado), 2010. Protocolo de Revision del Convenio Sobre Cooperación Para La Protección y el Aprovechamiento Sostenible de Las Aguas de las Cuencas Hidrográficas Hispano-Portuguesas y el Protocolo adicional. Albufeira, Portugal, 30 de Noviembre de 1998. BOE. 14, de 16 de enero de 2010, 3425–3432CEDEX (Centro de Estudios y Experimentación de Obras Públicas), 2011. Evaluación del Impacto del Cambio Climático en los recursos hídricos en régimen natural. Encomienda de gestión de la Dirección General del Agua (MARM) para el estudio del cambio climático en los recursos hídricos y las masas de agua. Madrid, Spain: Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento.Collet, L., Ruelland, D., Estupina, V. B., Dezetter, A., & Servat, E. (2015). Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment. Science of The Total Environment, 536, 589-602. doi:10.1016/j.scitotenv.2015.07.093Official Journal of the European Communities. (1984). Analytical Proceedings, 21(6), 196. doi:10.1039/ap9842100196Estrada Lorenzo, F., 1993. La garantía en los sistemas de explotación de recursos hidráulicos. Thesis (PhD). Universidad Politécnica de Madrid.García-Santos, G., de Brito, M. M., Höllermann, B., Taft, L., Almoradie, A., & Evers, M. (2018). Methodology to explore emergent behaviours of the interactions between water resources and ecosystem under a pluralistic approach. Proceedings of the International Association of Hydrological Sciences, 379, 83-87. doi:10.5194/piahs-379-83-2018Gheisi, A., Forsyth, M., & Naser, G. (2016). Water Distribution Systems Reliability: A Review of Research Literature. Journal of Water Resources Planning and Management, 142(11), 04016047. doi:10.1061/(asce)wr.1943-5452.0000690Gohari, A., Mirchi, A., & Madani, K. (2017). System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 31(5), 1413-1434. doi:10.1007/s11269-017-1575-zGoharian, E., Burian, S. J., & Karamouz, M. (2018). Using Joint Probability Distribution of Reliability and Vulnerability to Develop a Water System Performance Index. Journal of Water Resources Planning and Management, 144(2), 04017081. doi:10.1061/(asce)wr.1943-5452.0000869Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. doi:10.1029/wr018i001p00014Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213(2018). Water and Environment Journal, 32(1). doi:10.1111/wej.2018.32.issue-1Lall, U., & Miller, C. W. (1988). An optimization model for screening multipurpose reservoir systems. Water Resources Research, 24(7), 953-968. doi:10.1029/wr024i007p00953LOUCKS, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal, 42(4), 513-530. doi:10.1080/02626669709492051Loucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. doi:10.1007/978-3-319-44234-1Milano, M., Reynard, E., Köplin, N., & Weingartner, R. (2015). Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress. Science of The Total Environment, 536, 12-24. doi:10.1016/j.scitotenv.2015.07.049Ortega-Gómez, T., Pérez-Martín, M. A., & Estrela, T. (2018). Improvement of the drought indicators system in the Júcar River Basin, Spain. Science of The Total Environment, 610-611, 276-290. doi:10.1016/j.scitotenv.2017.07.250Pedro Monzonís, M., 2014. Análisis de metodologías de balances hídricos en sistemas complejos en el contexto europeo de la Planificación hidrológica. Aplicación a la cuenca del Júcar. Thesis (MS). Universitat Politècnica de València.Pedro-Monzonís, M., 2016. Assessment of water exploitation indexes based on water accounting. Thesis (PhD). Universitat Politècnica de València.Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003Ruiz Pulpón, Á. R. (2006). Regadíos y gestión sostenible de los recursos hídricos en la cuenca del Guadiana: propuesta territorial previa a la toma de decisiones. Investigaciones Geográficas, (40), 183. doi:10.14198/ingeo2006.40.09Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability Index for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 137(5), 381-390. doi:10.1061/(asce)wr.1943-5452.0000134Sarang, A., Vahedi, A., & Shamsai, A. (2007). How to Quantify Sustainable Development: A Risk-Based Approach to Water Quality Management. Environmental Management, 41(2), 200-220. doi:10.1007/s00267-007-9047-5Shilling, F. and Shilling, F., 2014. California Water Sustainability Indicators Framework : Assessment at State and Region Scales Final Report California Water Sustainability Indicators Framework : Assessment at State and Region Scale. California, USA: California Department of Water Resources.Sivapalan, M. (2018). From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science. Hydrology and Earth System Sciences, 22(3), 1665-1693. doi:10.5194/hess-22-1665-2018Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., … Rodríguez‐Iturbe, I. (2014). Socio‐hydrology: Use‐inspired water sustainability science for the Anthropocene. Earth’s Future, 2(4), 225-230. doi:10.1002/2013ef000164Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new science of people and water. Hydrological Processes, 26(8), 1270-1276. doi:10.1002/hyp.8426Srdjevic, Z., & Srdjevic, B. (2017). An Extension of the Sustainability Index Definition in Water Resources Planning and Management. Water Resources Management, 31(5), 1695-1712. doi:10.1007/s11269-017-1609-6Troy, T. J., Pavao-Zuckerman, M., & Evans, T. P. (2015). Debates-Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. Water Resources Research, 51(6), 4806-4814. doi:10.1002/2015wr017046Xu, L., Gober, P., Wheater, H. S., & Kajikawa, Y. (2018). Reframing socio-hydrological research to include a social science perspective. Journal of Hydrology, 563, 76-83. doi:10.1016/j.jhydrol.2018.05.061Yustres, Á., Navarro, V., Asensio, L., Candel, M., & García, B. (2013). Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrogeology Journal, 21(5), 1129-1146. doi:10.1007/s10040-013-0987-

    Aplicación de metodologías activas para mejora del aprendizaje y desarrollo de competencias transversales. Experiencia en una asignatura de calidad de aguas de máster universitario

    Full text link
    [EN] Integration in the European Higher Education Area requires the implementation of active learning methodologies that focus on the student and promote the development of transversal competences. In the present study the experience carried out in a subject of University Master is exposed. The active methodologies applied are the resolution of practical cases and the field visit where various activities are carried out to recognize in situ the knowledge acquired in the classroom. The results of a specific survey completed by the students at the end of the course are very positive, indicating a good acceptance of the applied methodologies. The grades obtained by the students in the evaluation activities also show that the learning has been deep and that different transversal competences have been adequately worked.[ES] La integración en el Espacio Europeo de Educación Superior requiere la implementación de metodologías activas de aprendizje, que centren el protagonismo en el alumno y fomenten el desarrollo de competencias transversales. En el presente estudio se expone la experiencia llevada a cabo en una asignatura de Máster Universitario. Las metodologías activas aplicadas son la resolución de casos prácticos y la visita de campo durante la que se realizan diversas actividades para reconocer in situ los conocimientos adquiridos en el aula. Los resultados de una encuesta específica cumplimentada por los estudiantes al finalizar el curso son muy positivos, indicando una buena aceptación de las metodologías aplicadas. Las calificaciones obtenidas por los alumnos en las actividades de evaluación también muestran que el aprendizaje ha sido profundo y que se han trabajado adecuadamente diversas competencias transversales.Hernández Crespo, C.; Martín Monerris, M.; Paredes Arquiola, J. (2017). Aplicación de metodologías activas para mejora del aprendizaje y desarrollo de competencias transversales. Experiencia en una asignatura de calidad de aguas de máster universitario. En In-Red 2017. III Congreso Nacional de innovación educativa y de docencia en red. Editorial Universitat Politècnica de València. 897-904. https://doi.org/10.4995/INRED2017.2017.6813OCS89790

    Managing water quality under drought conditions in the Llobregat River Basin

    Full text link
    [EN] The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. (C) 2014 Elsevier B.V. All rights reserved.The authors would like to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the SCARCE (Consolider-Ingenio 2010 CSD2009-00065) and NUTEGES (CGL2012-34978) projects. We also value the support provided by the European Community's Seventh Framework Program in financing the SIRIUS (FP7-SPACE-2010-1, 262902), DROUGHT-R&SPI (FP7-ENV-2011, 282769) and ENHANCE (FP7-ENV-2012, 308438) projects. Moreover, we are grateful to the Catalan Water Agency for the data provided to develop this study.Momblanch Benavent, A.; Paredes Arquiola, J.; Munné, A.; Manzano, A.; Arnau Cosín, J.; Andreu Álvarez, J. (2015). Managing water quality under drought conditions in the Llobregat River Basin. Science of the Total Environment. 503-504:300-318. https://doi.org/10.1016/j.scitotenv.2014.06.069S300318503-50

    Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain

    Full text link
    [EN] High nutrient discharge from groundwater (GW) into surface water (SW) have multiple undesirable effects on river water quality. With the aim to estimate the impact of anthropic pressures and river-aquifer interactions on nitrate status in SW, this study integrates two hydrological simulation and water quality models. PATRICAL models SW-GW interactions and RREA models streamflow changes due to human activity. The models were applied to the Jucar River Basin District (RBD), where 33% of the aquifers have a concentration above 50 mg NO3-/L. As a result, there is a direct linear correlation between the nitrate concentration in rivers and aquifers (Jucar r(2) = 0.9, and Turia r(2) = 0.8), since in these Mediterranean basins, the main amount of river flows comes from groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream of the district, where artificial surfaces and agriculture are concentrated. The total NO3- load to Jucar RBD rivers was estimated at 10,202 tN/year (239 kg/km(2)/year), from which 99% is generated by diffuse pollution, and 3378 tN/year (79 kg/km(2)/year) is discharged into the Mediterranean Sea. Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation water, river-aquifer interactions, and flow regulation. The models used in this paper allow the identification of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and the evaluation of the efficiency of measures to prevent water degradation, among other applications.The first author's research is partially funded by a PhD scholarship from the food research stream of the program "Colombia Cientifica-Pasaporte a la Ciencia", granted by the Colombian Institute for Educational Technical Studies Abroad (Instituto Colombiano de Credito Educativo y Estudios Tecnicos en el Exterior, ICETEX). The authors thank the Spanish Research Agency (AEI) for the financial support to RESPHIRA project (PID2019-106322RB-100)/AEI/10.13039/501100011033.Dorado-Guerra, DY.; Paredes Arquiola, J.; Pérez-Martín, MÁ.; Tafur Hermann, H. (2021). Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain. Sustainability. 13(22):1-21. https://doi.org/10.3390/su132212835S121132
    corecore